Tryptophan biosynthesis in Saccharomyces cerevisiae: control of the flux through the pathway.

نویسندگان

  • G Miozzari
  • P Niederberger
  • R Hütter
چکیده

Enzyme derepression and feedback inhibition of the first enzyme are the regulatory mechanisms demonstrated for the tryptophan pathway in Saccharomyces cerevisiae. The relative contributions of the two mechanisms to the control of the flux through the pathway in vivo were analyzed by (i) measuring feedback inhibition of anthranilate synthase in vivo, (ii) determining the effect of regulatory mutations on the level of the tryptophan pool and the flux through the pathway, and (iii) varying the gene dose of individual enzymes of the pathway at the tetraploid level. We conclude that the flux through the pathway is adjusted to the rate of protein synthesis by means of feedback inhibition of the first enzyme by the end product, tryptophan. The synthesis of the tryptophan enzymes could not be repressed below a basal level by tryptophan supplementation of the media. The enzymes are present in excess. Increasing or lowering the concentration of individual enzymes had no noticeable influencing on the overall flux to tryptophan. The uninhibited capacity of the pathway could be observed both upon relieving feedback inhibition by tryptophan limitation and in feedback-insensitive mutants. It exceeded the rate of consumption of the amino acid on minimal medium by a factor of three. Tryptophan limitation caused derepression of four of the five tryptophan enzymes and, as a consequence, led to a further increase in the capacity of the pathway. However, because of the large reserve capacity of the "repressed" pathway, tryptophan limitation could not be imposed on wild-type cells without resorting to the use of analogs. Our results, therefore, suggest that derepression does not serve as an instrument for the specific regulation of the flux through the tryptophan pathway.

منابع مشابه

Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae.

Control of transcription and enzyme activities are two interwoven regulatory systems essential for the function of a metabolic node. Saccharomyces cerevisiae strains differing in enzyme activities at the chorismate branch point of aromatic amino acid biosynthesis were constructed by recombinant DNA technology. Expression of an allosterically unregulated, constitutively activated chorismate muta...

متن کامل

Biosynthesis of Zinc Oxide Nanoparticles using Intracellular Extract of Saccharomyces cerevisiae and Evaluation of its Antibacterial and Antioxidant Activities

Introduction: Attention to the biosynthesis of nanoparticles (NPs) has been increased recently since they are cost-effective, eco-friendly, and potential alternatives to chemical and physical methods. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using an intracellular extract of Saccharomyces cerevisiae. Moreover, it was attempted to evaluate their antibacterial and antioxi...

متن کامل

Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway.

Arabidopsis thaliana has two genes, ASA1 and ASA2, encoding the alpha subunit of anthranilate synthase, the enzyme catalyzing the first reaction in the tryptophan biosynthetic pathway. As a branchpoint enzyme in aromatic amino acid biosynthesis, anthranilate synthase has an important regulatory role. The sequences of the plant genes are homologous to their microbial counterparts. Both predicted...

متن کامل

Effects of yeast (Saccharomyces cerevisiae) supplementation on intake, digestibility, rumen fermentation and milk yield in Nili-Ravi buffaloes

Rumen Yeast® (RY; Saccharomyces cerevisiae), a live yeast strain, improves milk yield and composition and nutrients digestibility through balancing rumen ecosystem and increasing ruminal cellulolytic bacteria numbers in cattle. To examine the effects of dietary supplementation of RY in Nili-Ravi buffaloes, 16 buffaloes with 8 L average daily milk production were randomly divided into two groups...

متن کامل

Enzyme analysis of the tryptophan pathway in Aspergillus nidulans.

we sequential enzyme reactions which lead to the biosynthesis of tryptoT T i n are essentially identical in Escherichia coli, Neurospora crassa, and Saccharomyces cerevisiae. In contrast, marked differences have been found in the number of demonstrable protein components which catalyze these five reactions and in the number of genetic loci controlling the pathway (Table 1 ) . The differences in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Journal of bacteriology

دوره 134 1  شماره 

صفحات  -

تاریخ انتشار 1978